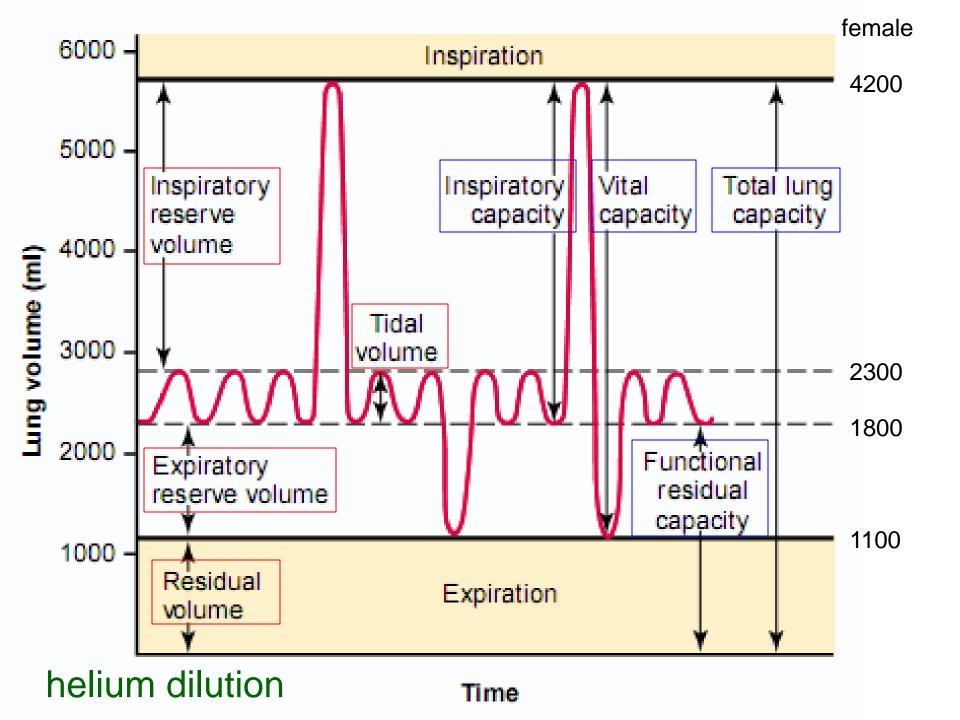
General Functions of Respiratory System

- takes up O₂ and eliminate CO₂
- maintenance of body pH
- a reservoir of blood (about 1 L)
- Lung Defence mechanisms
- * Particles (>10 μm): hair in the nasal cavity
- \clubsuit Particles (2-10 μ m) : ciliary escalator
- Particles (< 2 μm): PAM phagocytosis</p>
- IgA in bronchial secretion : secretory Ig

- URT: humidify, cool and warm the inspired air
- Filters small blood thrombi
- Water vaporization : thermoregulatory function

Metabolic functions

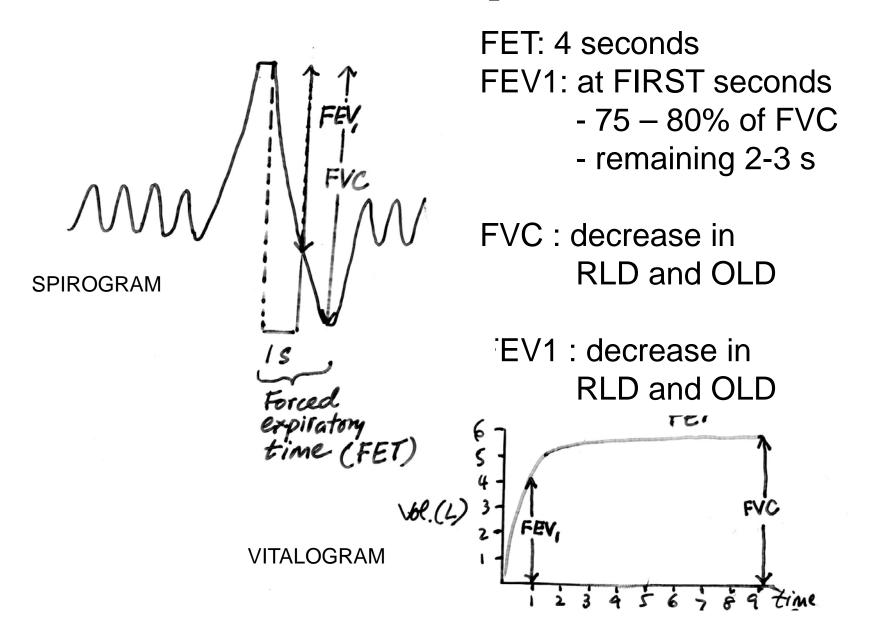

- Surfactant synthesis
- Fibrinolytic activity
- Release of some chemicals (e.g. PGs, histamine, kallikrein)
- Removes some chemicals from blood (e.g. PGs, bradykinin, adenine nucleotides, serotinin, NA, Ach)
- ACE
- Alveolar Macrophages : synthesize protein
- Participate in CH₂O metabolism

RESPIRATORY FUNCTION TESTS

1. Tests of ventilation

Measurement of volume and flow

- 1.1. Lung volumes and capacities
- 1.2. Forced expiration
 - 1.2.1. Timed vital capacity (FEV₁)
 - 1.2.2. Peak expiratory flow rate (PEFR)
 - 1.2.3. maximum voluntary ventilation (MVV)
 - 1.2.4. forced expiratory time (FET)

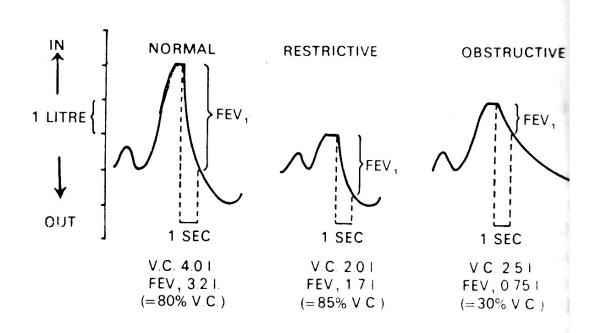


LUNG DISEASES

- Restrictive lung diseases: decrease in LVs
 - Lung expansion limited
 (eg. Diffuse pulmonary fibrosis)
 - Immobility of the thoracic cage (eg. Kyphoscoliosis)
 - Weakness of respiratory muscles (eg. Myasthenia gravis

 Obstructive lung diseases (eg. Bronchial astyhma or emphysema): increase in RV

Timed vital capacity (FEV₁)


FEV₁ / FVC ratio

Obstructive airway diseases

- FEV₁: reduced
- FVC : reduced
- RV : increased
- FEV₁/FVC : low

Restrictive lung diseases

- FEV₁: reduced
- FVC : reduced
- RV : reduced
- FEV₁/FVC : normal

1. Tests of ventilation

Measurement of volume and flow

- 1.1. Lung volumes and capacities
- 1.2. Forced expiration
 - 1.2.1. Timed vital capacity (FEV₁)
 - 1.2.2. Peak expiratory flow rate (PEFR)
 - 1.2.3. maximum voluntary ventilation (MVV)
 - 1.2.4. forced expiratory time (FET)

2. Tests of gas exchange

- 2.1. Arterial blood gases (P_{O2}, P_{CO2}, pH)
- 2.2. Measurement of diffusion capacity for carbon monoxide:

 $T_{co} = 25 \text{ ml/min/mmHg}$

3. Tests of mechanics of breathing

- 3.1. Measurement of lung compliance
- 3.2. Measurement of airway resistance

4. Others

- 4.1. Distribution of V and Q
- 4.2. Measurement of dead space, RV

Respiratory insufficiencies: HYPOXIA

Definition: O₂ deficiency at the tissue level

```
Types: FOUR
```

- (1) hypoxic
- (2) anaemic
- (3) ischaemic (stagnant)
- (4) histotoxic

HYPOXIA

Туре	Pa _{O2}	RBCs (Hb)	Blood flow	Tissue toxicity	Examples
Hypoxic	reduced	Normal	Normal	Normal	High altitude Ventilatory failure - narcotic drug overdose - mechanical defects - fatigue of muscles Gas exchange failure - lung diseases
Anaemic	Normal	reduced altered	Normal	Normal	Anaemia CO poisoning
Ischaemic	Normal	Normal	reduced	Normal	Circulatory failure (hypovolemia) Cardiac failure
Histotoxic	Normal	Normal	Normal	++	Cyanide poison

CYANOSIS: blue discolouration of the skin and mucous membrane (HHb more than 5g/dl)

O₂ therapy

Effects of Hypoxia

Acute changes: a sudden drop in inspired air <20 mmHg

loss of consciousness in 10-20 seconds, death in 4-5 minutes less severe hypoxia: a variety of mental aberrations

Chronic changes:

hyperpnoea and dyspnoea on exertion

Adaptive changes:

hyperventilation, respiratory alkalosis, increased erythropoietin Increased RBC 2-3 BPG content, increased mitochondria

Respiratory failure

(inadequate ventilatory performance)

 P_{02} : < 60 mmHg (8.0 kPa)

 P_{CO2} : > 50 mmHg (6.6 kPa)

Effects of barometric pressure

Decreased

Increased

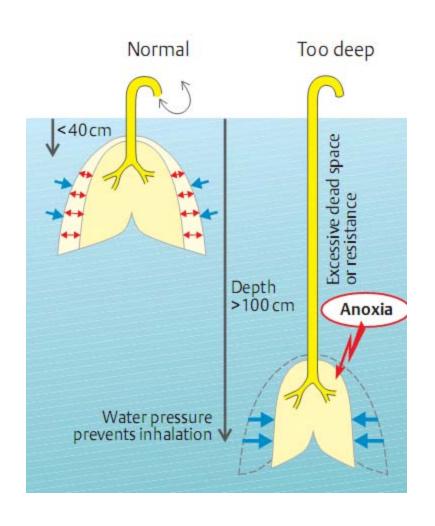
Effects of decreased barometric pressure

Above sea level	PA O2	Pa CO2	Remarks
At sea level	100	40	1 ATM = 760 mmHg
3050 m (10,000 ft)	60	Fall	Hyperventilation Respiratory alkalosis
3700 m			Mental symptoms (breathing air)
6100 m (20,000 ft)			Loss of conscious (breathing air)
10400 m (34,000 ft)	100	40	Barometric pressure = 187 mmHg Breathing 100% O ₂
14000 m			Loss of conscious (breathing 100% O ₂) Artificial atmosphere: life possible
19200 m			Body fluid boiled at 37°C

Human habitations: 5500 m (barrel-chest and marked polycythaemia)

Top of Mt Everest: 8854 m

Delayed effects of high altitude

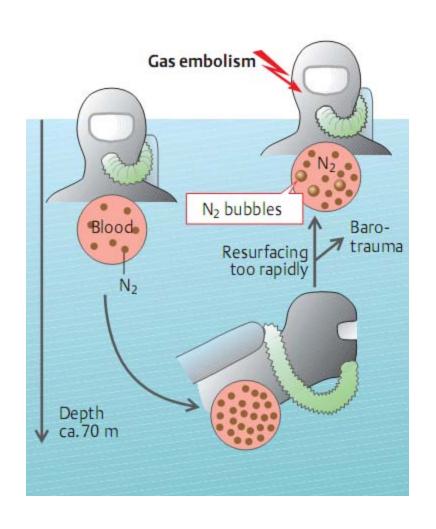

MOUNTAIN SICKNESS

- appears within 8-24 hours
- lasts for 4-8 days
- symptoms: headache, irritability, insomnia, breathlessness, nausea, vomiting
- associated with cerebral edema
- pulmonary edema
- is prone to occur in individuals who ascend quickly to altitude

Acclimatization to altitude

- Hyperventilation
- Respiratory alkalosis (plasma pH decreased)
- Oxygen dissociation curve: shift to the left
- Concomittent increase in RBC 2-3 BPG: decrease in O₂ affinity
 more available to the tissue
- Erythropoietin: increased promptly and then fall
- RBCs: increased begins in 2-3 days and sustained as long as remains in high altitude
- Compensatory changes in tissue: an increase in mitochrondria, myoglobin, cytochrome oxidae

Effects of increased barometric pressure



1 ATM:

every 10 m of depth in sea water every 10.4 m in fresh water

Divers: 31 m in the ocean (4 ATM) must breathe air or gases at increased pressure

Breathing compressed air: P_{N2} increased

N₂ narcosis (Rapture of the deep)

Definite euphoria (at 30-40 m in the ocean)

Manual dexterity: maintained

Intellectual functions: impaired

Decompression sickness

- rapid ascend
- N₂ escapes from solution
- N₂ bubbles in the tissues and blood
- the bends and the chokes