Polyneuropathies

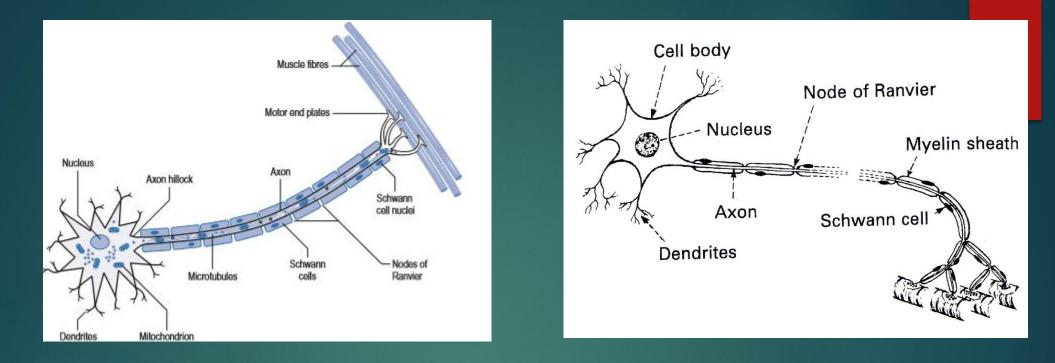
Daw Nyein Myat Noe Demonstrator Department of Physiotherapy University of Medical Technology, Yangon

Learning Objectives

Define polyneuropathies.

- Explain classification, pathology, aetiology and investigations of polyneuropathies.
- Describe most common acute and chronic polyneuropathies and their related management.
- Describe the role of physiotherapy in polyneuropathies.

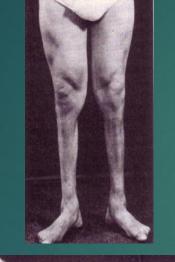
Contents


Definition

Nerve Physiology

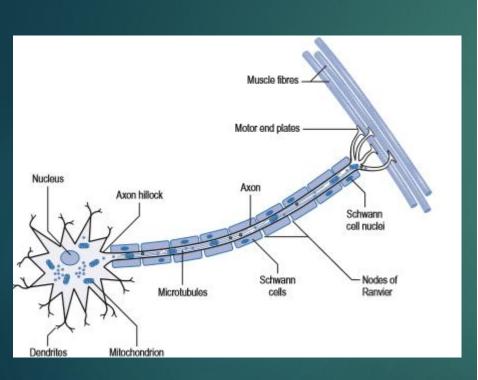
Classification, Pathology, Aetiology, Investigations

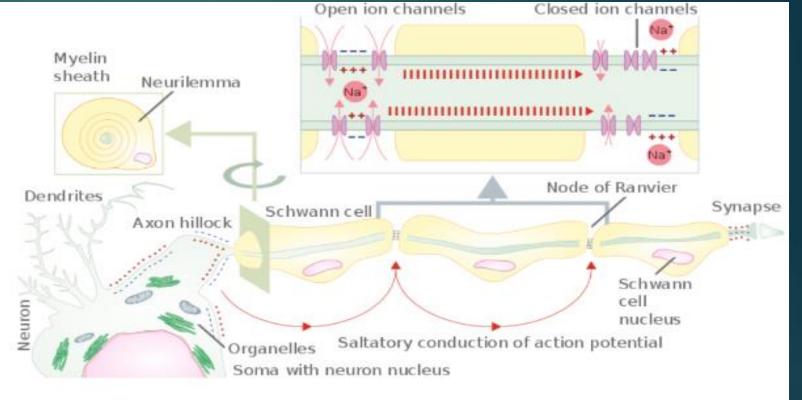
Most common acute and chronic polyneuropathies


Physiotherapy interventions

Polyneuropathies are generalized disorders of peripheral nerves, affecting both motor and sensory neurons

Impairment of transmission of nerve action potentials d/t disruption of axon or myelin sheath

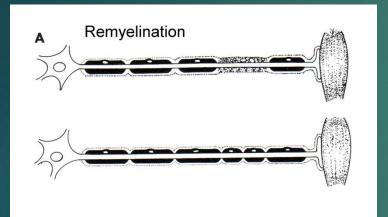



Begins in the hands and feet, progress to the arms and legs and other parts of the body where it may affect the <u>autonomic nervous system</u>

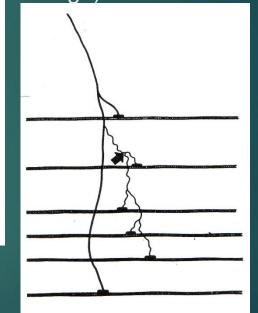
► <u>Acute</u> or <u>chronic</u>

Usually seen in the young or middle-aged adult; men being affected more than women

Nerve Physiology

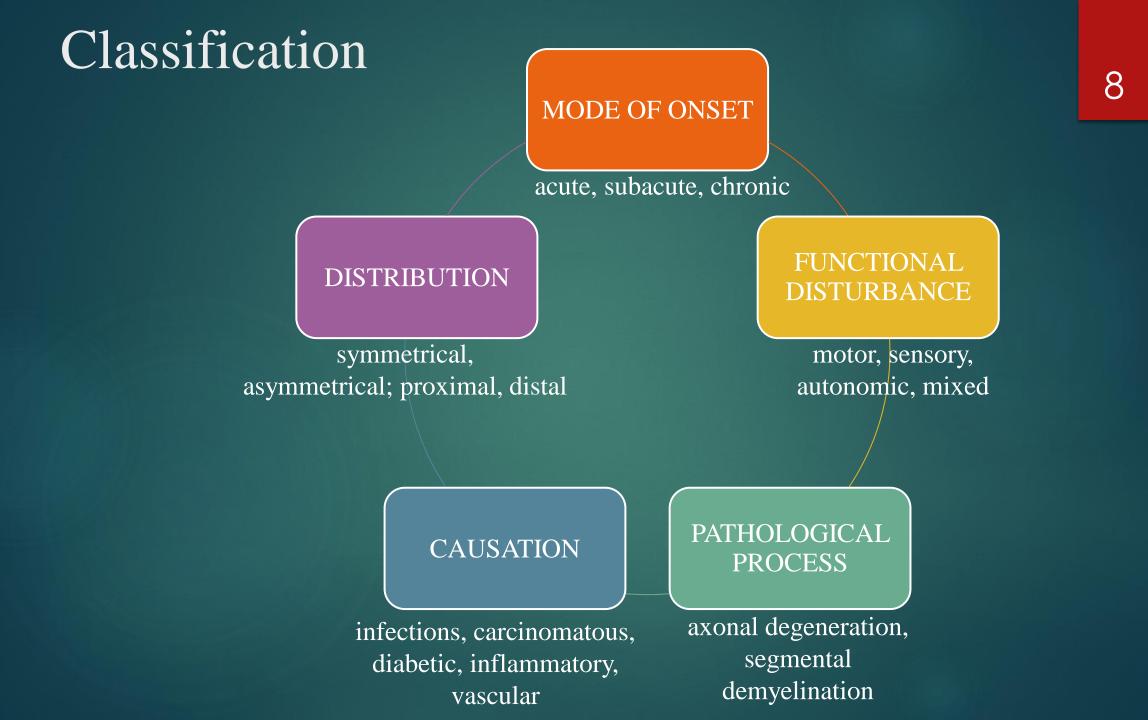


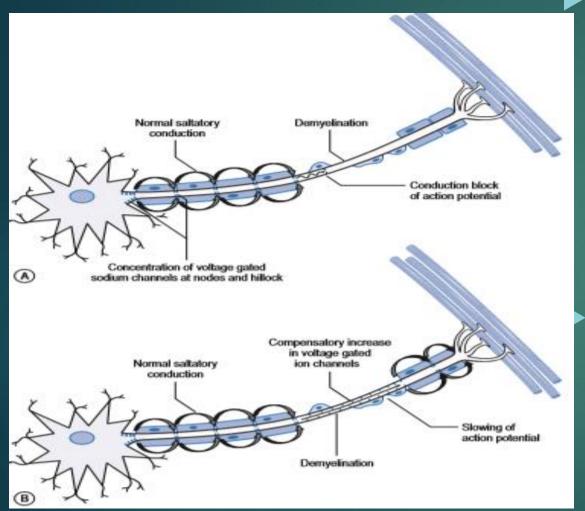
Propagation of action potential along myelinated nerve fiber


Nerve regeneration – reinnervation

Remyelination

Proximo-distal axon regeneration Axonal regeneration

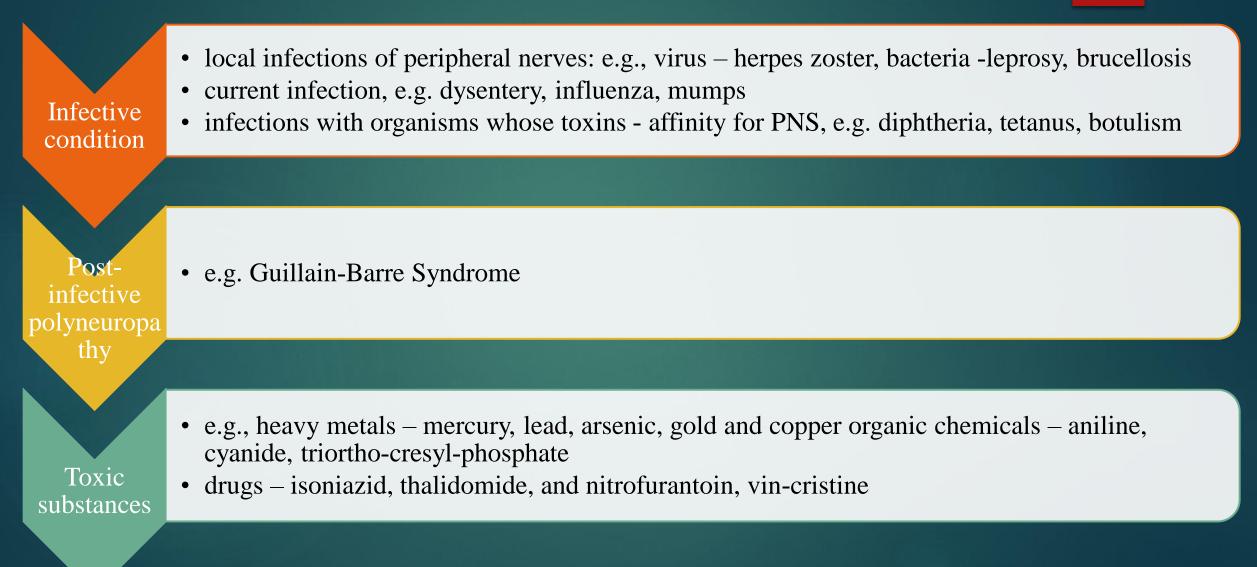

Collateral reinnervation (in case of partial nerve damage)


2-12 weeks

Starts within 4-6 weeks

1 mm/day Intact basal lamina/endoneurium is needed

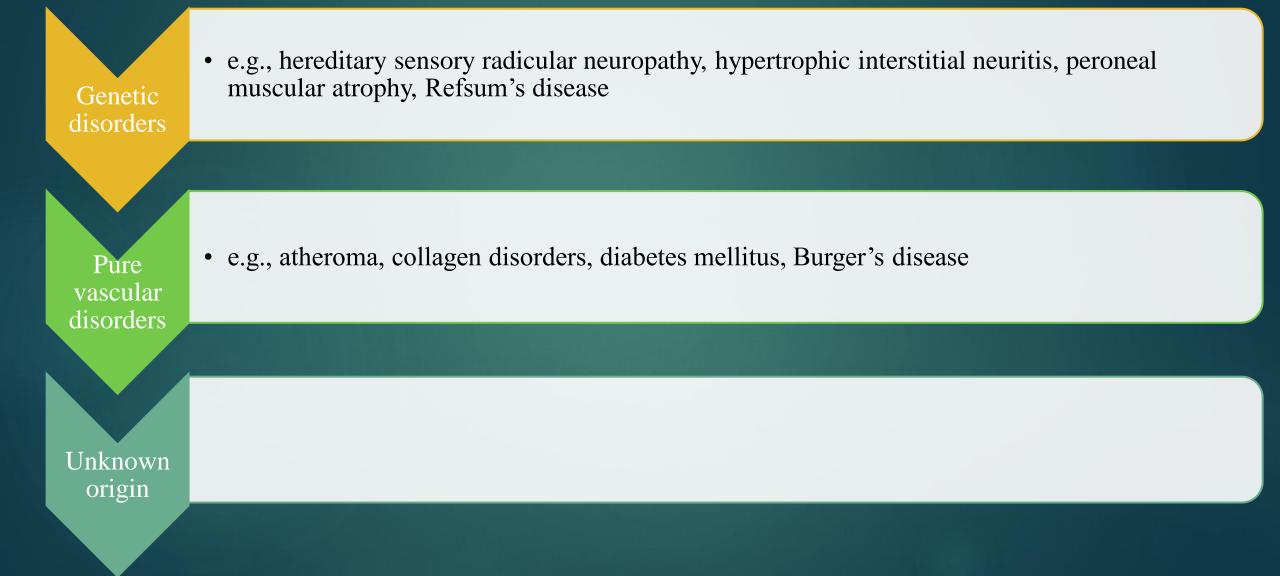
Pathology


Axonal degeneration

- Nerve cell body & axon are affected
- Similar to Wallerian degeneration
- Recovery slow and incomplete
- Occurs in neuropathies of causes: poisons, nutritional deficiencies, ischaemia

Segmental demyelination

- Affects Schwann cell, result in demyelination
- Recovery rapid and complete
- Occur with a diabetic neuropathy & Guillain-Barre syndrome



Deficiency, metabolic, blood	• e.g., alcoholism, porphyria, leukaemia, DM, chronic uraemia, liver failure & vitamin deficiencies
disorders	
Trauma	• e.g., physical (compression/stretching), electrical (earth shock) or radiation injury to nerves
Connective tissue disease	• e.g. RA, polyarteritis nodosa, SLE, amyloid disease, sarcoidosis & carcinoma
discuse	

General Investigations

- ► Urine glucose, protein
- ► Haematology FBC, ESR, vitamin B12, folate
- ► Biochemistry fasting glucose, RFT, LFT, TSH
- Neurophysiology testing nerve conduction studies, needle electromyography
- ► Nerve biopsy

Most common acute and chronic polyneuropathies

Demyelinating Polyneuropathies

- Occur due to degeneration/destruction of myelin
- Prolonged periods of demyelination can lead to axonal degeneration

Acute demyelinating polyneuropathy

- Highest point of severity/nadir reaches in < 4 weeks</p>
- Guillain Barre' syndrome (GBS), affect any age group, more prevalent in men and in older people

Rapidly progressive paralysis, sensory impairment and areflexia

Guillain Barre' syndrome

GBS is an autoimmune disorder where an immune response is directed towards unknown antigens triggered by the earlier infection

This immune response leads to an inflammatory process and destruction of the myelin sheath in the larger diameter motor and sensory neurons

Presentation of Guillain Barre' syndrome

16

Acute inflammatory demyelination - disruption of saltatory conduction leading to a slowing or block of nerve conduction

▶ Proximal/distal weakness & sensory loss \rightarrow ascends or descends from onset

In severe cases - trunk weakness & bulbar dysfunction, respiratory function and vital capacity

Autonomic involvement - fluctuations in BP & cardiac arrhythmias

Nadir Acute phase (deterioration)	Sub-acute phase	Dependant on degree of damage to axon Recovery phase (remyelination)
Up to 4	Few days →	Few weeks →
weeks	few weeks	2 years

Phases and progression of Guillain Barre ' syndrome

Initial management

• To address any serious complications, e.g. reduced VC and airway protection

Treatment

- Intravenous immunoglobulins (IVIg)
- Plasma exchange or plasmapheresis

Physiotherapy

- Respiratory interventions

 sputum clearance techniques, maintenance of lung volumes, breathing exercises
- Prevention of secondary complications
- Early mobilization, splinting, positioning, stretches to maintain ROM & exercises to increase strength & endurance

Chronic demyelinating polyneuropathy

Acquired or inherited
 Taking > 8 weeks to develop
 Most common causes - inflammatory and genetic pathologies

18

Chronic inflammatory demyelinating polyradiculoneuropathy (*CIDP*)

Immunologically mediated neuropathy

- Multifocal demyelination, predominantly affects spinal nerve roots, proximal nerve trunks & plexuses leading to patchy regions of demyelination with some inflammatory infiltrates
- Primarily a motor neuropathy affect distal & proximal m/s, distal ankle m/s
 weakest
- Sensory impairment present with sensory ataxia
- ► Tendon reflexes (-), facial palsy, fatigue

Treatment with corticosteroids, intravenous immunoglobulins and plasma exchange are necessary over a prolonged period

Charcot-Marie-Tooth disease type 1 (CMT1) 21

Hereditary neurological condition

Slow decline in distal m/s strength and sensation that predominantly affects longer peripheral nerves

Type 1 CMT (CMT1) presents with demyelination of more thickly myelinated, fast-conducting axons, e.g. alpha motor neurons and 1a afferent sensory neurons

Presentation

Muscle wasting with 'inverted wine bottle' appearance of distal lower limb and 'claw hand' of upper limb - weaken first & slow decline in strength over decades

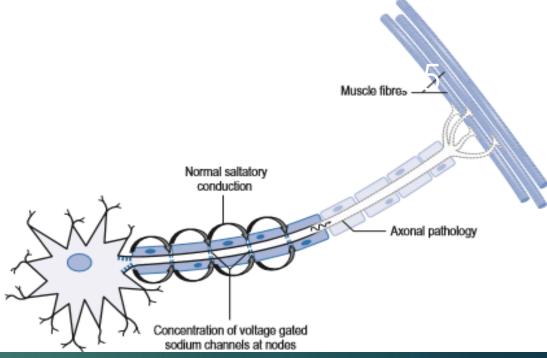
Degree & extent of weakness is correlated with axonal loss than demyelination

Proximal limb m/s are less affected

Principal impairment of thickly myelinated large diameter sensory nerves (light touch and vibration)

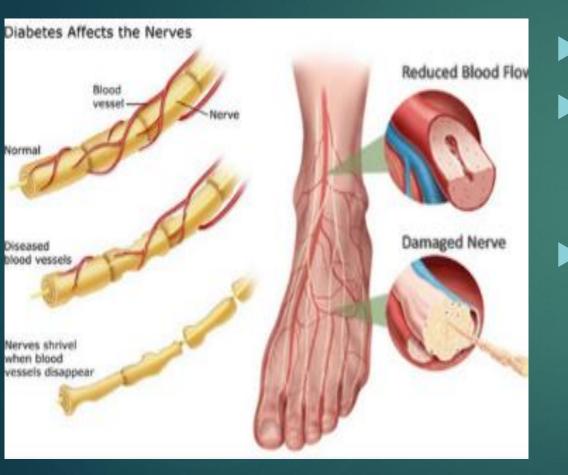
Sensations by smaller diameter fibres (pain, temperature or pin prick) may be reduced

Presentation


- Pes cavus , hind foot varus, toe clawing and dorsiflexion of MTPJ
- Foot drop and failure of plantarflexors influence the pattern of gait
- Aerobic deconditioning and disuse muscle atrophy impact on fatigue and prolonged performance of daily tasks.

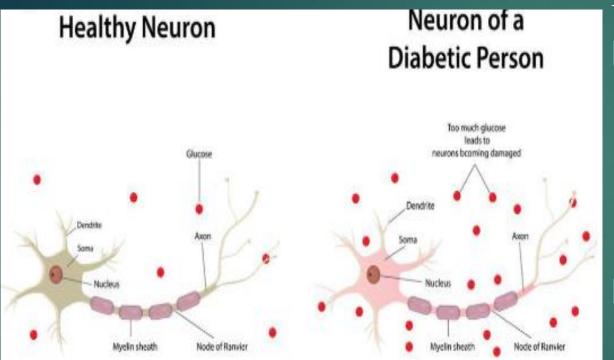
► There is no drug therapy for people with CMT1

Axonal Polyneuropathies



Chronic axonal neuropathies are the most common type

- Causes vary from metabolic disorders, such as chronic renal failure and malignancy, to toxicity from chemical agents
- Characterized by abnormality and degeneration of nerve axons, so can affect nerves of any diameter and modality
- ► Diabetic neuropathy and Charcot-Marie-Tooth disease type 2 (CMT2)


Diabetic neuropathy

▶ Just sensory or sensorimotor in presentation
 ▶ Burning, numbness in feet d/t involvement of smaller diameter, unmyelinated fibres from cutaneous pain receptors
 ▶ Skin biopsies → reduced density of unmyelinated fibres in epidermis (degeneration)

Diabetic neuropathy

Pathological process

- Initiated through hyperglycaemia which has a toxic effect on nerves via oxidative stress, impaired axonal transport and accumulation of end products from glycation
- Effect on microvascular structures supporting the nerves with defects in the capillary endothelia

Presentation

Diagnosis is from neurological examination & glucose tolerance testing
 Progression is slow and prognosis depends on diabetic management
 Gait pattern changes and increased double support → Increase plantar pressures → Risk of injury to skin and ulceration, so protective footwear is recommended

Consequence of sensory loss is postural instability and falls due to reduced proprioception and cutaneous sensation

► The standard therapy for IGT and diabetes is diet and lifestyle advice

Charcot-Marie-Tooth disease type 2

- Degeneration of nerve axon, less common than type 1; the most common mutation is of mitofusin 2 gene, a mitochondrial protein important role in the process of mitochondrial fusion within a cell
- Long axon has high energy requirements far away from nerve cell body which is provided by the mitochondria

30

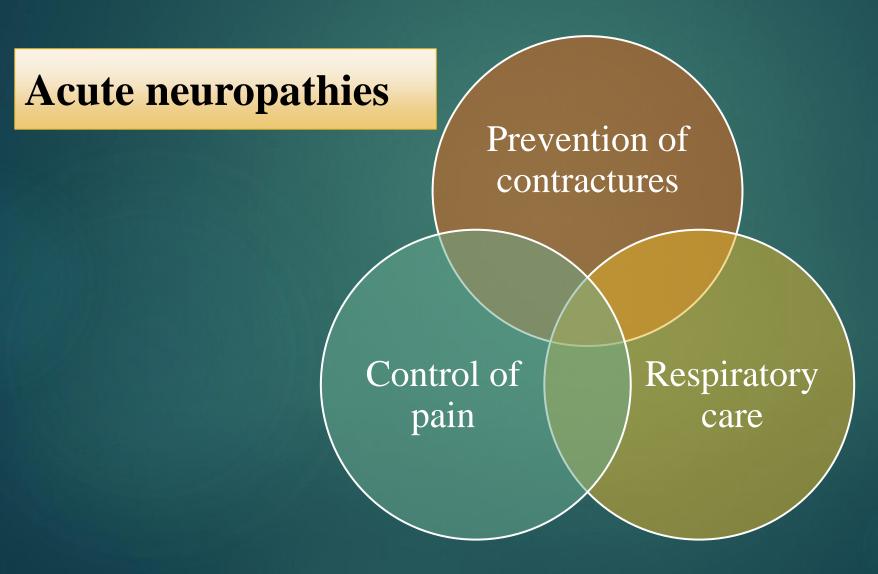
Deficiency of mitofusin 2 affects the transport of mitochondria down the axon, result in degeneration of distal axon that is initially seen in longer nerves such as those supplying the foot and ankle muscles

Presentation

Similar phenotype as CMT1
Slow progression of distal weakness, wasting and sensory loss
Onset of symptoms may be later in life so the pes cavus foot type is not always present

► No specific medical interventions or under investigation

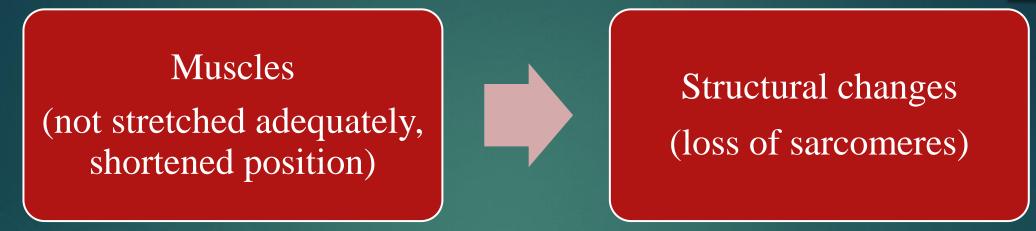
PHYSIOTHERAPY INTERVENTIONS


Exercise

- improve aerobic fitness and cardiopulmonary function
 Orthotic management
- For foot deformity to distribute pressure under plantar surface or correct flexible pes cavus using lateral posting

33

- To reduce plantar pressures foot orthoses, custom-made shoes or casts are used to redistribute pressure, and to provide soft padding and shock absorbance through total plantar contact
- Total contact casts reduce postural stability


Principles of physiotherapy intervention

34

Stretching to prevent contractures

► All structures, including nervous system - moved through full range

- Encouraged to join in with movement and use, be taught self stretches in a weight-bearing position
- ► In bed-bound pt foot drop splints & gentle stretches

Positioning

- 36
- Frequent changes prevent selective muscle shortening and pressure sores

Pain

- Patients with acute GBS enjoy large-amplitude mid-range movements because of their pain-relieving properties
- In other neuropathies, massage and ice packs are helpful

Respiratory care

• Patient – ventilated, facial muscle weakness, ANS is affected, disturbed blood pressure, especially when using suction or when attempting early sitting

Chronic neuropathies

Role of the physiotherapist is largely one of management in chronic cases

Early referrals are important to advise on activities to maintain ambulation and prevent avoidable complications such as foot deformities

Strengthening exercises	 Rate of deterioration may be reduced or recovery hastened 38 without affecting the underlying disorder Where muscles are severely weakened, strengthening is slim and exercise could cause further damage to the motor unit
Stretches	 Gentle stretches for muscle groups that are liable to shorten If real shortening occurred, attempts to stretch cause damage to other related structures
Pain relief	 Malalignment of joints due to muscle imbalance leads to pain Ice, massage and vibration diminish painful chronic sensory neuropathies Transcutaneous electrical nerve stimulation
Functional and mobility aids	• Orthoses and wheelchairs

References

 Thomson, et al., (1991). Tidy's Physiotherapy. 12th eds.
 Stokes, M. and Stack, E. (2011). Physical Management for Neurological Conditions. 3rd eds. China: Elsevier Limited.
 Cash's textbook of neurology for physiotherapists. 4th eds.
 <u>http://www</u>. Polyneuropathies. Physiopedia.com.

Thank You