Paper I: Upper Limb prosthetics and orthotics and Spinal orthotics

Chapter 6: Upper limb Socket Designs

Intake 2016

Introduction

- If you break a trans-radial prosthesis into parts, can you name each part of it?
 - Socket designs
 - Suspension system
 - Terminal devices
 - Connectors

Types of the Prosthesis

Passive/Cosmetic Provide no function of the hand grip

Function Provide some function hand grip

Body Power

Use body movements to operate the hand

External Powered

Use either electrical impulse from the muscle (Myoelectric control) or battery (switch control)

Types of the Prosthesis

Cosmetic (Passive)

Body Powered (Functional)

Externally Powered (Functional)

Socket Designs

- Sockets should be designed to:
 - Be comfortable
 - Provide good force transmission
 - Control rotation
 - Be stable on the residual limb
 - Easy donning and doffing

Prosthetic Option for partial hand

Passive partial hand Prostheses

- Passive partial hand option include multiple fingers, thumb and partial hand
 - To provide appearance restoration of the hand

Thumb Prostheses

Prosthetic Option for partial hand

- Functional partial hand prosthetic solution
 - Provide basic grasping ability to restore loss of fingers

Body Powered finger Prosthesis

Electrically finger Prosthesis

Prosthetic Option

 Variety of prosthetic option for specific task are created to meet intended specific activity

Socket designs for below elbow

- A. Plug fit (or standard)
- B. North Western supra-condylar (NWSC)
- C. Muenster
- D. Stratchlyde Supra Olecranon Socket

A. Plug fit

- Forces are transferred between the stump and the prosthesis through circumferential pressure
- Anterior & posterior aspects of the socket are flatten to provide rotational control

- It can be used for a long TR with a good soft tissue coverage
- Allows a full range of motion of elbow joint and ulnar-radial joint
- Requires a harness to suspend a socket

Trim-lines

B. North Western Supracondylar NWSC

- Self-suspended
- Not allow pronation and supination
- Additional medial & lateral flares help
 - Keep the prosthesis stable
 - Transferring forces

It is often used for a patient who have a long-medium-length stumps

C. Muenster

- Self-suspended
 - Medial trim-lines cover medial, lateral condyles
 - Posterior trim-line encloses an elecranon
 - Anterior trim-line is kept proximal to the level of the cubital crease
- Provides very good stability for Short and very short stump

 Prevent full extension and flexion

Trim-lines

Anterior trimmed to or above anterior crease

Trimmed over olecranon by approximately one fingers breadth

> Medial and lateral socket extensions trimmed above epi-condyles

D. Strathclyde Supra Olecranon Socket (SSOS)

- Self-suspended
 - Over the olecranon
- Medial and lateral wings help to maintain the position of the socket on the stump
- Limit the extension
- Restrict forearm motion

 Not clear about the indication but practically, it is prescribed for a medium length stump

Elbow disarticulation prosthesis

- Socket need to be split or build up liner for donning and doffing
- Rotational control can be obtained by flattening Ant/Post distal part of socket or extend proximally

Socket designs for above elbow

- There are 2 basic socket designs:
 - A. Over shoulder design
 - B. Short trim-line or below acromion design

Trans humeral socket design

- Must consider;
 - Rotational stability
 - Suspension
- Socket design and trimlines will depend on stump length.

A. Over the shoulder design

- Proximal trimline over shoulder
- Medial trimline is just below the medial axilla
- Reduces harness forces

A. Over shoulder design

Trim-lines extend over the shoulder to allow suspension forces to be taken through the socket which reduces the harness forces

 Abduction of shoulder joint is limited

B. Below acromion design

- Trim-lines are below the acromion level
- Require harness straps for suspension
- Abduction of shoulder joint is not limited
- Self-suspension can be produced
- Silicon suspension system is also available

Shoulder disarticulation prosthesis

- No special design
- Consider symmetrical of shoulder
- Consider about trimline, straps, harness and material to improve functions

Suspension – self suspending sockets

	Advantages	Disadvantages	Indication	Contra- indication
	• Easy to don & doff	• Restriction to RoM of the elbow joint and forearm	• Cosmesis is important	• Early operative stage
	 Less restrictive to the contralateral side 	 May cause discomfort over suspension areas when doing heavy works 	• Passive use & patient's preference	• Fitting with children
	• Minimal strap control		Short stump	• Scar tissue or a skin graft over the area of suspension
, 2	exceed		Scarring on ipsilateral axilla	

Suspension - harness

- The use of a harness suspension for a TR amputation may be required if:
 - Short stump
 - Oedema with pain
 - Bilateral
 - Keeping a prosthesis in place is the major importance
 - Using it for a long time and don't want to change
 - Young children to prevent them removing it

Thank you for your attention

& Any questions??

