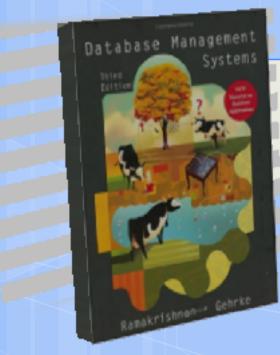
Database Management System


mm

VIVERS

Daw Lay Myat Myat Thein Associate Professor Faculty Of Information Science email: laymyatmyatthein@uit.edu.

Text Book

"Database Management System, Third Edition", By Raghu Ramakrishnan

Reference Books

MODER

"Modern Database Management," Eleventh Edition By Jeffrey A. Hoffer. V.Ramesh, Heikki Topi

SQL Queries For Mere Mortals Second Scalar Amered Code O

"SQL Queries for Mere Mortals, Second Edition, A Hands -on Guide to Data Manipulation in SQL", By John L.Viescas Michael J.Hernandez

Reference Books

ATABASE SYSTEMS

"An Introduction to DATABASE SYSTEMS, Seventh Edition By C.J.DATE

Overview of Database Systems

Introduction to Database

Understanding the Database Management System(DBMS)

Database System Architecture and Transaction Management

Introduction to Database

Basic concepts

Data: stored representations of meaningful objects and events.

- Structured: numbers, text, dates
- Unstructured :images, video, documents

Information: data processed to increase knowledge in the person using the data

Introduction to Database

✓ E.g consider list of facts

 Baker, Kenneth
 D. 324917628

 Doyle, Joan
 E. 476193248

 Finkle, Clive
 R. 548429344

 Lewis, John
 C. 551742186

 McFerran, Debra
 R. 409723145

✓ (useless in their present form)/Raw Facts ✓ Satisfy data

Class Roster										
Course: MGT 500 Semester: Spring 2010 Business Policy										
Section: 2										
Name	ID	Major	GPA							
Baker, Kenneth D.	324917628	MGT	2.9							
Doyle, Joan E.	476193248	MKT	3.4							
Finkle, Clive R.	548429344	PRM	2.8							
Lewis, John C.	551742186	MGT	3.7							
McFerran, Debra R.	409723145	IS	2.9							
Sisneros, Michael	392416582	ACCT	3.3							

Figure 1: information of Class Roster

Introduction to Database

✓ **Metadata**: data that describes the properties

and context of user data.

TABLE 1 Example Metadata for Class Roster										
Data Item	Data Item Metadata									
Name	Туре	Length	Min	Max	Description	Source				
Course	Alphanumeric	30			Course ID and name	Academic Unit				
Section	Integer	1	1	9	Section number	Registrar				
Semester	Alphanumeric	10			Semester and year	Registrar				
Name	Alphanumeric	30			Student name	Student IS				
ID	Integer	9			Student ID (SSN)	Student IS				
Major	Alphanumeric	4			Student major	Student IS				
GPA	Decimal	3	0.0	4.0	Student grade point average	Academic Unit				

Q

Introduction to Database

What is database?

 ✓ organized collection of logically related data, usually designed to meet the information needs of multiple users in an organization.

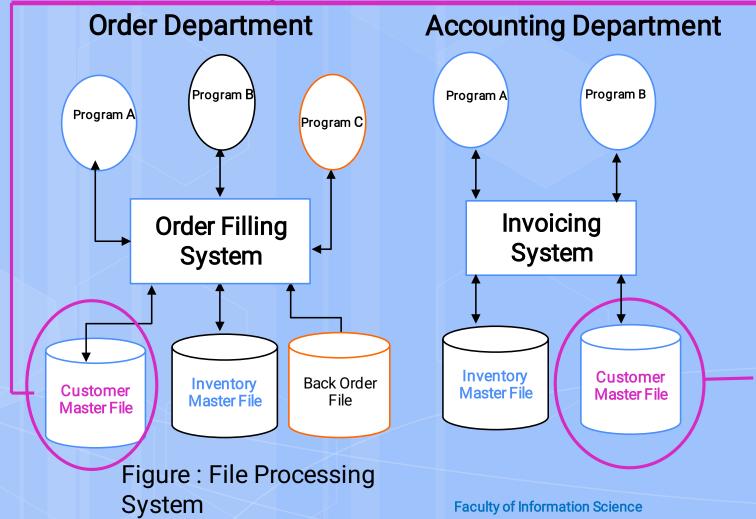
DATABASE

- ✓ For example, A university database contain:
- Entities :students, faculty, courses, classrooms.
- Relationships :students' enrollment in courses, faculty teaching courses, the use of classrooms for courses.

Types of Database

Category	Types of Database	Description
Number of Users	Single-user databaseMulti-user database	Supports one user at a timeSupports concurrent users at a time
Data Location	Centralized databaseDistributed database	Data located in a single siteData distributed across different sites
Data Usage	 Operational Database Data warehouse	 Supports day-by-day operation for the organization (OLTP) Sorting data used to generate information for analyses (OLAP)
Data Availability	Standalone databaseClustering database	 Supports no faults tolerant mechanism Supports fault tolerant mechanism

Introduction to Database


File Processing System

- ✓ Program-Data Dependency
- ✓ All programs maintain metadata for each file they use
- ✓ Makes duplicate data , causes maintenance headaches.
- ✓ The biggest problem:
- ·Data changes in one file could cause data inconsistencies
- •Compromises in *data integrity*

Duplicate Data

Introduction to Database

File System Versus Database

✓ To resolve file system problem, databases were proposed.

 \checkmark A comparison of traditional files and databases is as shown below:

Item	File	Database		
Impact of changes to data format on program	Large	Small		
Redundancy of data	Data is sometimes redun- dant on a task-by-task basis	No redundancy		
Consistency between related data	Hard to maintain	Can be maintained		
Sharing of data between tasks	Sharing is difficult	Sharing is easy		
Data backup	Complicated	Simple and easy		

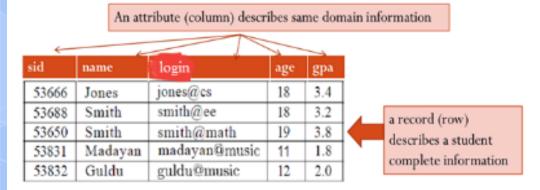
Introduction to Database

Data Model

✓ stored data in terms of *a data model*.
 ✓ data model is a collection of high-level data description
 ✓ A description of data in terms of a data model is called a schema.

Types of Data Models

- 1. The relational data model (Oracle, Sybase, Microsoft's Access)
- 2. The hierarchical model (IBM's IMS DBMS)
- 3. The network model (IDS and IDMS)
- 4. The object-oriented model
- 5. The object-relational model



Introduction to Database

The Relational Model

- ✓ Data Model in the relational model
- ✓ Schema : relation's name, field's name (attribute or column), and data type
 - Data is represented in rows and columns:
- ✓ Students(sid: string, name: string, login: string, age: integer, gpa: real)

Introduction to Database

The Network Model

Data Model in the network model. \checkmark

М

F

F

F

Manager

Assistant

Assistant

Manager

Assistant

Supervisor M

1-Oct-45

10-Nov-60

24-Mar-58

19-Feb-70

3-Jun-40

13-Jun-65

30000

12000

18000

9000

24000

9000

- Data is represented as collections of records \checkmark
- Relationships are represented by sets.
- (Many-to-many parent-child relationships) \checkmark

						L.											
Branch							B005	22 Dee	r Ró	Londo	n 7		SL41	Julie	Lee	 Assistant	9000
						1 L		_			_						
branchNo	street	city	/	postC	ode		8007	16 Arg	yll St	Aberd	000		SL21	John	White	 Manager	30000
2000				(1) (1) (1)		1											
B005	22 Deer B			SW1 4			B003	163 Ma	sin St	Glasge			SA9	Mary	Howe	 Assistant	9000
B007	16 Argyll			AB2 %							Ì	1					
B003	163 Main		é.	G1190			B004	32 Mar	ise Rd	Bristol		// /	8337	Ann	Beech	 Assistant	12000
B004	32 Manse			B5991								//					
B002	56 Clover	Dr Lor	ıdon	NW10	6EU		B002	56 Clo	ver Dr	Londo	n	- \ \	SG14	David	Ford	 Supervisor	18000
Staff													935	Susan	Brand	 Manager	24000
at a fille	Alere I	Name				000		a alami	h								
staffNo	rname I	rvame	positio	on i	80X	DOB		salary	branci	nNO							

B005

B003

B003

B007

B003

B005

A sample instance of a network schema.

Faculty of Information Science

16

John

Ann

David

Mary

Susan

Julie

White

Beech

Ford

Howe

Brand

Lee

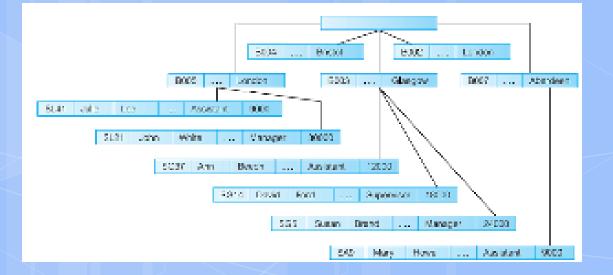
SL21

\$G37

SG14

SA9

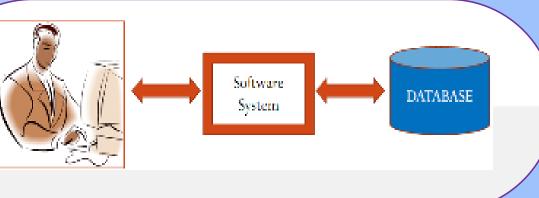
SG5


SL41

Introduction to Database

Hierarchical Model

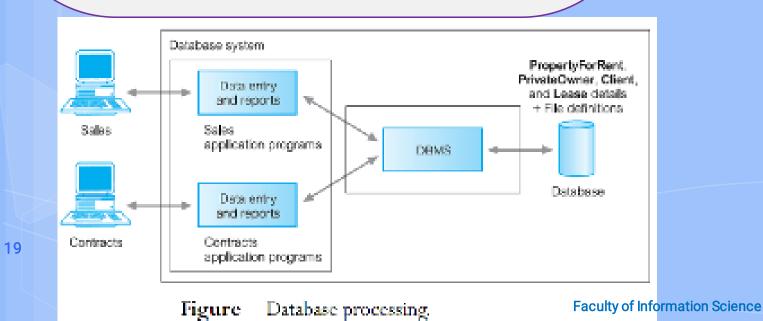
- ✓ restricted type of network model.
- ✓ Data is represented as collections of records
- relationships are represented by sets.
 (One-to-many parent-child relationships)
- can be represented as a tree graph.



Understanding the Database Management System(DBMS)

What is DBMS?

- ✓ software designed to assist in maintaining and utilizing large collections of data.
- ✓ enables users to define, create, maintain, and control access to the database.



Understanding the Database Management System(DBMS)

A computer program that interacts with the database by issuing an appropriate request (an SQL statement) to the DBMS.

DBMS facilities (Function of DBMS)

- ✓ Data Definition Language (DDL): to specify the data types and structures and the constraints on the data to be stored in the database.
- ✓ Data Manipulation Language (DML): to insert, update, delete, and retrieve data from the database using the Structured Query Language (SQL)
- ✓ It provides controlled access to the database.

✓ a security system: prevents unauthorized users accessing the database;

 \checkmark an integrity system: maintains the consistency of stored data;

✓ a concurrency control system: allows shared access of the database;

✓ a recovery control system: restores the database to a previous consistent state following a hardware or software failure

Advantages of a DBMS

✓ Data Independence: provides an abstract view of the data that

hides such details.

✓ Efficient Data Access: provides techniques to store and retrieve data efficiently.

✓ Data Integrity and Security:

✓ can enforce integrity constraints.

✓ can enforce access controls that govern what

data is visible to different classes of users.

22

✓ Data Administration


- centralizing the administration of data
- ✓ minimize redundancy
- ✓ retrieval efficient
- \checkmark Concurrent Access and Crash Recovery
 - ✓ Provides concurrent accesses to the data
 - \checkmark protects users from the effects of system failures.
- ✓ Reduced Application Development Time
 - ✓ supports important functions that are common to many applications

UNIVERSITY

Understanding the Database Management System(DBMS)

Components of DBMS

- 1. Hardware
- 2. Software
- 3. **Data**
- 4. **Procedures**
- 5. **People**

24

			/	Data		
	Hardware	Software		\bigcirc	Procedures	People
l			J	Bridge		
	Mac	hine	-	5	Hur	nan

✓ Hardware

 \checkmark can range from a single personal computer to a network of computers.

 \checkmark depends on the organization's requirements and the DBMS used.

✓ DBMS requires a minimum amount of main memory and disk space to run.

✓ Software

✓ DBMS software itself

(Oracle, Sybase, MS Access, MySQL, etc.)

Understanding the Database Management System(DBMS)

✓Data

✓ The database contains both the operational data and the metadata, the 'data about data'

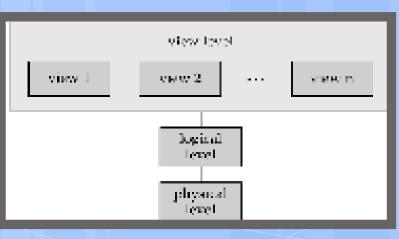
✓ Procedures

✓ The instructions and rules that govern the design and use of the database.

✓ People

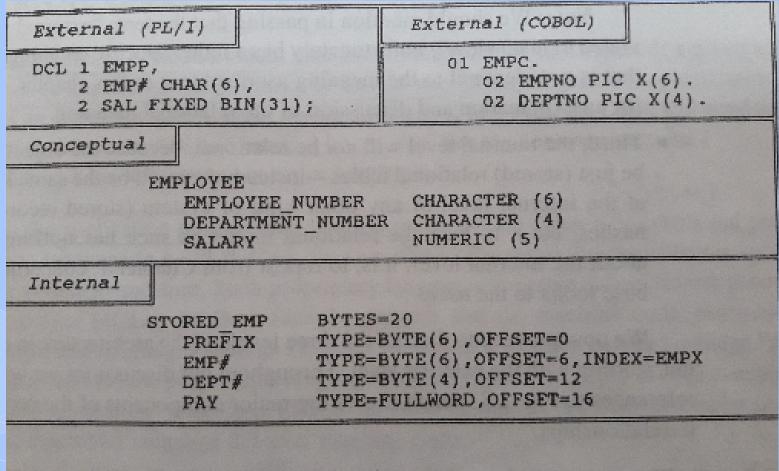
- ✓1. Database administrators (DBA),
- ✓2. Database designers,
- ✓3. Application developers, and
- ✓4. End-users.

Database System Architecture and Transaction Management



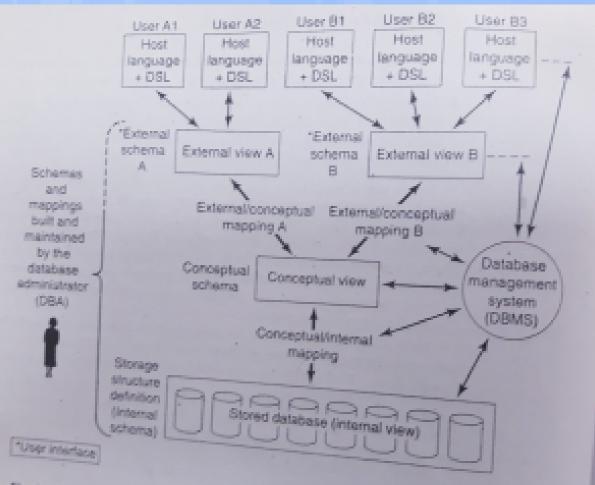
Database System Architecture

✓ described as three levels:


- ✓ External level (Individual user view)
- ✓ physical level or internal level (storage view).

✓ At each of these three levels of abstraction has its own schema.

Database System Architecture and Transaction Management



ig. 2.2 An example of the three levels

28

Database System Architecture and Transaction Management

Host language is responsible for providing various nondatabase facilities

Such as local variables, computational operations, branching logic and so on.

Data sublanguage(DSL) is said to be embedded within the corresponding host language

Mappings

- External conceptual mapping
- Conceptual internal mapping

29

Fig. 2.3 Detailed system architecture

Database System Architecture and Transaction Management

Transaction Management

 \checkmark A transaction is any one execution of a user program in a DBMS.

✓ Executing the same program several times will generate several transactions.

✓ Partial transactions are not allowed

ACID Properties. (Atomicity, Consistency, Isolation, Durability)

Database System Architecture and Transaction Management

Concurrent Execution of Transactions

- ✓ concurrent accesses to data
- ✓ A lock is a mechanism used to control access to database objects.
- \checkmark Two kinds of locks are
 - ✓ Shared lock (S Lock) ,(Read Lock)
 - ✓An exclusive lock(X Lock), (Write Lock)
 - ✓ releases all its locks after completing all actions
 - (COMMIT or ROLLBACK)

Incomplete Transactions and System Crashes

 ✓ Transactions can be interrupted before running to completion e.g., a system crash.

- ✓ DBMS changes incomplete transactions are removed from the database.
- ✓ DBMS maintains a log of all writes to the database.
- ✓ This property is called Write-Ahead Log.